• Понятие, история открытия, структура и роль комплекса гольджи. §15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы Митохондрии комплекс гольджи лизосомы рибосомы

    25.03.2024

    Так и животных, и обычно состоит из совокупности чашеобразных отделов с мембраной, называемых цистернами, которые выглядят как стопка сдутых воздушных шаров.

    Однако у некоторых одноклеточных жгутиковых имеется 60 цистерн, формирующих аппарат Гольджи. Точно так же количество стопок комплекса Гольджи в изменяется в зависимости от ее функций. , как правило, содержат от 10 до 20 стопок на одну клетку, объединенных в один комплекс трубчатыми соединениями между цистернами. Аппарат Гольджи обычно расположен близко к .

    История открытия

    Из-за относительно больших размеров комплекс Гольджи был одной из первых наблюдаемых органелл в клетках. В 1897 году итальянский врач по имени Камилло Гольджи, изучающий нервную систему, использовал новую технологию окрашивания, которую сам же разработал (и которая актуальна в наши дни). Благодаря новому методу, ученый смог разглядеть клеточную структуру и назвал ее внутренним ретикулярным аппаратом.

    Вскоре после того, как он публично объявил о своем открытии в 1898 году, структура была названа в его честь, становясь универсально известной как аппарат Гольджи. Тем не менее, многие ученые того времени не верили, что Гольджи наблюдал настоящую органеллу клетки, и списывали открытие ученного на визуальное искажение, вызванное окрашиванием. Изобретение электронного микроскопа в двадцатом веке окончательно подтвердило, что аппарат Гольджи является клеточной органеллой.

    Строение

    У большинства эукариот аппарат Гольджи формируется из стопок мешочков, состоящих из двух основных отделов: цис-отдела и транс-отдела. Цис-отдел представляет собой комплекс сплюснутых мембранных дисков, известных как цистерны, происходящие из везикулярных кластеров, которые устремляются из эндоплазматического ретикулума.

    Клетки млекопитающих обычно содержат от 40 до 100 стопок. Как правило, от в каждая стопка включает от 4 до 8 цистерн. Однако у некоторых наблюдается около 60 цистерн. Этот набор цистерн разбит на цис, медиальные и транс-отделы. Транс-отдел представляет собой конечную цистернальную структуру, из которой белки упаковываются в везикулы, предназначенные для лизосом, секреторных везикул или клеточной поверхности.

    Функции

    Аппарат Гольджи часто считается отделом распределения и доставки химических веществ клетки. Он модифицирует белки и липиды (жиры), которые продуцируются в , и готовит их для экспорта за пределы клетки или для транспортировки в другие места внутри клетки. Белки и липиды, построенные в гладком и шероховатом эндоплазматическом ретикулуме, укладываются в крошечные пузырьковые везикулы, которые движутся через , пока не достигнут комплекса Гольджи.

    Везикулы сливаются с мембранами Гольджи и высвобождают, содержащиеся внутри молекулы в органеллу. Оказавшись внутри, соединения дополнительно обрабатываются с помощью аппарата Гольджи, а затем направляются в везикуле к месту назначения внутри или вне клетки. Экспортируемые продукты представляют собой секреции белков или гликопротеинов, которые являются частью функции клетки в организме. Другие вещества возвращаются в эндоплазматический ретикулум или могут созревать, чтобы впоследствии стать .

    Модификации молекул, которые осуществляются в комплексе Гольджи, происходят упорядоченным образом. Каждая цистерна имеет два основных отдела: цис-отдел - это конец органеллы, где вещества поступают из эндоплазматического ретикулума для обработки, а также транс-отдел, где они выходят в форме меньших отдельных везикул. Следовательно, цис-отдел расположен вблизи эндоплазматического ретикулума, откуда поступает большая часть веществ, а транс-отдел расположен вблизи клетки, куда отправляются многие из веществ, модифицирующиеся в аппарате Гольджи.

    Химический состав каждого отдела, а также ферменты, содержащиеся в люменах (внутренних открытых пространствах цистерн) между отделами, являются отличительными. Белки, углеводы, фосфолипиды и другие молекулы, образующиеся в эндоплазматическом ретикулуме, переносятся на аппарат Гольджи, чтобы подвергнутся биохимическому модифицированию при переходе от цис к транс-отделам комплекса. Ферменты, присутствующие в люмене Гольджи, модифицируют углеводную часть гликопротеинов путем добавления или вычитания отдельных мономеров сахара. Кроме того, аппарат Гольджи сам по себе производит самые разнообразные макромолекулы, включая полисахариды.

    Комплекс Гольджи в ​​растительных клетках продуцирует пектины и другие полисахариды, необходимые для структуры растений и обмена веществ. Продукты, экспортируемые аппаратом Гольджи через транс-отдел, в конечном итоге сливаются с плазматической мембраной клетки. Среди наиболее важных функций комплекса - сортировка большого количества макромолекул, продуцируемых клеткой, и их транспортировка в необходимые пункты назначения. Специализированные молекулярные идентификационные метки или метки, такие как фосфатные группы, добавляются ферментами Гольджи, чтобы помочь в этом процессе сортировки.

    Аппарат Гольджи – одномембранная, микроскопическая органелла эукариотической клетки, которая предназначена для завершения процессов синтеза клетки и обеспечивает вывод образовавшихся веществ.

    Исследование структурных компонентов комплекса Гольжи началось еще в 1898 итальянским ученым-гистологом Камилло Гольджи, в честь него органелла и была названа. Изучение органоида проходило впервые в составе нервной клетки.

    Строение комплекса Гольджи

    В пластинчатом комплексе (аппарат Гольджи) имеется три части:

    • Цис-цистерна — находится вблизи ядра, постоянно взаимодействует с гранулярной эндоплазматической сетью;
    • медиал-цистерна или промежуточная часть;
    • транс-цистерна — отдаленная от ядра, дает трубчатые разветвления, формируя транс-сеть Гольджи.

    Пластинчатый комплекс в клетках разной природы и даже на различных этапах дифференцировки одной клетки, иногда имеет отличительные черты в строении.


    Характерные признаки аппарата Гольджи

    Имеет вид стопки, которая состоит от трех до восьми цистерн, толщиной около 25 нм, они уплощены в центральной части и расширяются в направлении к периферии, напоминают стопку перевернутых тарелок. Поверхности цистерн примыкают друг к другу очень плотно. От периферической части отпочковываются небольшие мембранные пузырьки.

    Клетки человека имеют одну, реже пару стопок, а клетки растений могут содержать несколько таких образований. Совокупность цистерн (одна стопка) совместно с окружающими ее пузырьками называется диктиосомой. Несколько диктиосом могут связываться между собой, формируя сеть.

    Полярность – наличие цис-стороны, направленной к ЭПС и ядру, где происходит слияние везикул, и транс-стороны, устремленной к клеточной оболочке (это особенность хорошо прослеживается в клетках секретирующих органов).

    Асимметричность – сторона расположенная ближе к ядру клетки (проксимальный полюс) вмещает «незрелые» белки, к ней постоянно присоединяются везикулы, отсоединившиеся от ЭПС, транс-сторона (дистальный, зрелый полюс) содержит уже модифицированные белки.

    При разрушении чужеродными агентами пластинчатого комплекса, происходит разделение аппарата Гольджи на отдельные части, но его основные функции при этом сохраняются. После возобновления системы микротрубочек, которые были хаотично разбросаны в цитоплазме, части аппарата собираются, и снова превращаются в нормально функционирующий пластинчатый комплекс. Физиологическое разделение происходит и в обычных условиях жизнедеятельности клеток, во время непрямого деления.

    ЭПС и комплекс Гольджи

    ЭПС – это часть комплекса Гольджи?

    Однозначно нет. Эндоплазматическая сеть – это самостоятельная мембранная органелла, которая построена из системы замкнутых канальцев, цистерн, сформированных непрерывной мембраной. Основная функция – синтез белков, с помощью рибосом, размещенных на поверхности гранулярной ЭПС.

    Существует ряд сходных признаков между ЭПС и аппаратом Гольджи:

    • Это внутриклеточные образования, отграниченные от цитоплазмы мембраной;
    • отделяют мембранные пузырьки, которые наполнены органическими продуктами синтеза;
    • вместе формируют единую синтезирующую систему;
    • в секретирующих клетках имеют наибольшие размеры и высокий уровень развития.

    Чем образованы стенки эндоплазматической сети и комплекса Гольджи?

    Стенки ЭПС и аппарата Гольджи представлены в виде однослойной мембраны. Эти органеллы вместе с лизосомами, пероксисомами и митохондриями объединены в группу мембранных органоидов.

    Что происходит в комплексе Гольджи с гормонами и ферментами?

    За синтез гормонов отвечает эндоплазматическая сеть, на поверхности ее мембраны идет производство гормональных веществ. В комплекс Гольджи поступают синтезированные гормоны, здесь они накапливаются, затем идет переработка и выведение их наружу. Поэтому в клетках эндокринных органов встречаются комплексы больших размеров (до 10 мкм).

    Функции комплекса Гольджи

    Протеолиз белковых веществ, что приводит к активации белков, так проинсулин переходит в инсулин.

    Обеспечивает транспорт из клетки продуктов синтеза ЭПС.

    Самой важной функцией комплекса Гольджи считают выведение из клетки продуктов синтеза, поэтому его еще называют транспортным аппаратом клетки.

    Синтез полисахаридов , таких как пектин, гемицеллюлоза, которые входят в состав мембран растительных клеток, образование гликозаминогликанов, одного из составляющих межклеточной жидкости.

    В цистернах пластинчатого комплекса идет созревание белковых веществ , необходимых для секреции, трансмембранных протеинов клеточной мембраны, ферментов лизосом и др. В процессе созревания белки постепенно перемещаются по отделам органоида, в которых завершается их формирование и происходит гликозилирование и фосфорилирование.

    Формирование липоптротеидных веществ. Синтез и накопление слизистых веществ (муцина). Образование гликолипидов, которые входят в состав мембранного гликокаликса.

    Передает белки в трех направлениях: к лизосомам (перенос контролируется ферментом – маннозой- 6-фосфат), к мембранам или внутриклеточной среде, и к межклеточному пространству.

    Вместе с зернистой ЭПС образует лизосомы , путем слияния отпочковавшихся везикул с автолитическими ферментами.

    Экзоцитозный перенос – везикула, подойдя к мембране, встраивается в нее и оставляет свое содержимое с наружной стороны клетки.

    Сводная таблица функций комплекса Гольджи

    Структурная единица Функции
    Цис-цистерна Захват синтезированных ЭПС белков, мембранных липидов
    Срединные цистерны Посттрансляционные модификации связанные с переносом ацетилглюкозамина.
    Транс-цистерна Завершается гликозилирование, присоединение галактозы и сиаловой кислоты, идет сортировка веществ для дальнейшего транспорта из клетки.
    Пузырьки Отвечают за перенос липидов, белков в аппарат Гольджи и между цистернами, а также за выведение продуктов синтеза.

    Мембранные органеллы . Каждая мембранная органелла представляет структуру цитоплазмы, ограниченную мембраной. Вследствие этого внутри нее образуется пространство, отграниченное от гиалоплазмы. Цитоплазма оказывается таким образом разделенной на отдельные отсеки со своими свойствами - компарт- менты (англ. compartment - отделение, купе, отсек). Наличие компартментов - одна из важных особенностей эукариотичес- ких клеток.

    К мембранным органеллам относятся митохондрии, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы и пероксисомы.

    Митохондрии - «энергетические станции клетки», участвуют в процессах клеточного дыхания и преобразуют энергию, которая при этом освобождается, в форму, доступную для использования другими структурами клетки.

    Митохондрии, в отличие от других органелл, обладают собственной генетической системой, необходимой для их самовоспроизведения и синтеза белков. Они имеют свои ДНК, РНК и рибосомы, отличающиеся от таковых в ядре и в других отделах цитоплазмы собственной клетки. В то же время митохондриальные ДНК, РНК и рибосомы весьма сходны с прокариотическими. Это послужило толчком для разработки симбиотической гипотезы, согласно которой митохондрии (и хлоропласты) возникли из сим- биотических бактерий. Митохондриальная ДНК кольцевидная (как у бактерий), на нее приходится около 2% ДНК клетки.

    Митохондрии (и хлоропласты ) способны размножаться в клетке путем бинарного деления. Таким образом, они являются самовоспроизводящимися органеллами. Вместе с тем генетическая информация, содержащаяся в их ДНК, не обеспечивает их всеми необходимыми для полного самовоспроизведения белками; часть этих белков кодируется ядерными генами и поступает в митохондрии из гиалоплазмы. Поэтому митохондрии в отношении их самовоспроизведения называют полуавтономными структурами. У человека и других млекопитающих митохондриальный геном наследуется от матери: при оплодотворении яйцеклетки митохондрии спермия в нее не проникают.

    Каждая митохондрия образована двумя мембранами - внешней и внутренней (13). Между ними расположено межмембранное пространство шириной 10 - 20 нм. Внешняя мембрана ровная, внутренняя же образует многочисленные кристы, которые могут иметь вид складок, трубочек и гребней. Благодаря кристам площадь внутренней мембраны существенно увеличивается.

    Пространство, ограниченное внутренней мембраной, заполнено коллоидным митохондриальныш матриксом. Он имеет мелкозернистую структуру и содержит множество различных ферментов. В матриксе также заключен собственный генетический аппарат митохондрий (у растений, кроме митохондрий, ДНК содержится также и в хлоропластах).

    Со стороны матрикса к поверхности крист прикреплено множество электроноплотных субмитохондриальных элементарных частиц (до 4000 на 1 мкм2 мембраны). Каждая из них имеет форму гриба (см. 13). В этих частицах сосредоточены ATP-азы - ферменты, непосредственно обеспечивающие синтез и распад ATP. Эти процессы неразрывно связаны с циклом трикарбоновых кислот (циклом Кребса).

    Количество, размеры и расположение митохондрий зависят от функции клетки, в частности от ее потребности в энергии и от места, где энергия расходуется. Так, в одной печеночной клетке их количество достигает 2500. Множество крупных митохондрий содержится в кардиомиоцитах и миосимпластах мышечных волокон. В спермиях богатые кристами митохондрии окружают аксонему промежуточной части жгутика.

    Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР ), представляет собой единый непрерывный компарт- мент, ограниченный мембраной, образующей множество инвагинаций и складок (14). Поэтому на электронно-микроскопических фотографиях эндоплазматическая сеть выглядит в виде множества трубочек, плоских или округлых цистерн, мембранных пузырьков. На мембранах ЭПС совершаются многообразные первичные синтезы веществ, необходимых для жизнедеятельности клетки. Молекулы этих веществ будут подвергаться дальнейшим химическим превращениям в других компартментах клетки.

    Большинство веществ синтезируется на наружной поверхности мембран ЭПС. Затем эти вещества переносятся через мембрану внутрь компартмента и там транспортируются к местам дальнейших биохимических превращений, в частности к комплексу Гольджи. На концах трубочек ЭПС они накапливаются и затем отделяются

    от них в виде транспортных пузырьков. Каждый пузырек окружен, таким образом, мембраной и перемещается в гиалоплазме к месту назначения. Как всегда, в транспорте принимают участие микротрубочки.

    Различают два типа ЭПС: гранулярную (зернистую, шероховатую) и агра- нулярную (гладкую). Обе они представляют собой единую структуру.

    Наружная, обращенная к гиалоплазме сторона мембраны гранулярной ЭПС покрыта рибосомами. Здесь осуществляется синтез белков. В клетках, специализирующихся на синтезе белков, гранулярная эндо- плазматическая сеть выглядит в виде параллельных окончатых (фенестри- рованных), сообщающихся между собой и с перинуклеарным пространством ламеллярных структур, между которыми лежит множество свободных рибосом.

    Поверхность гладкой ЭПС лишена рибосом. Сама сеть представляет собой множество мелких трубочек диаметром около 50 нм каждая.

    На мембранах гладкой сети синтезируются углеводы и липиды, среди них - гликоген и холестерин. Являясь депо ионов кальция, гладкая эндоплазматическая сеть участвует в сокращении кардио- миоцитов и волокон скелетной мышечной ткани. Она же разграничивает будущие тромбоциты в мегакариоцитах. Чрезвычайно важна ее роль в детоксикации гепатоцитами веществ, которые поступают из полости кишки по воротной вене в печеночные капилляры.

    По просветам эндоплазматической сети синтезированные вещества транспортируются к комплексу Гольджи (но просветы сети не сообщаются с просветами цистерн последнего). К комплексу Гольджи вещества поступают в пузырьках, которые сначала от- шнуровываются от сети, транспортируются к комплексу и, наконец, сливаются с ним. От комплекса Гольджи вещества транспортируются к местам своего использования также в мембранных пузырьках. Следует подчеркнуть, что одной из важнейших функций эндоплазматической сети является синтез белков и липи- дов для всех клеточных органелл.

    Чаще всего в КГ выявляются три мембранных элемента: уплощенные мешочки (цистерны), пузырьки и вакуоли (15). Основные элементы комплекса Гольджи - диктиосомы (греч. dyction - сеть). Число их колеблется в разных клетках от одной до нескольких сотен. Концы цистерн расширены. От них отщепляются пузырьки и вакуоли, окруженные мембраной и содержащие различные вещества.

    Наиболее широкие уплощенные цистерны обращены в сторону ЭПС. К ним присоединяются транспортные пузырьки, несущие вещества - продукты первичных синтезов. В цистернах приносимые макромолекулы модифицируются. Здесь происходит синтез полисахаридов, модификация олигосахаридов, образование белково-углеводных комплексов и ковалентная модификация переносимых макромолекул.

    По мере модификации вещества переходят из одних цистерн в другие. На боковых поверхностях цистерн возникают выросты, куда перемещаются вещества. Выросты отщепляются в виде пузырьков, которые удаляются от КГ в различных направлениях по гиалоплазме.

    Сторону КГ, куда поступают вещества от ЭПС, называют цис- полюсом (формирующаяся поверхность), противоположную - транс-полюсом (зрелая поверхность). Таким образом, комплекс Гольджи структурно и биохимически поляризован.

    Судьба пузырьков, отщепляющихся от КГ, различна. Одни из них направляются к поверхности клетки и выводят синтезированные вещества в межклеточный матрикс. Часть этих веществ представляет собой продукты метаболизма, часть же - специально синтезированные продукты, обладающие биологической активностью (секреты). В процессе упаковки веществ в пузырьки расходуется значительное количество материала мембран. Сборка мембран - еще одна из функций КГ. Эта сборка совершается из веществ, поступающих, как обычно, от ЭПС.

    Во всех случаях вблизи комплекса Гольджи концентрируются митохондрии. Это связано с происходящими в нем энергозависимыми реакциями.

    Лизосомы . Каждая лизосома представляет собой мембранный пузырек диаметром 0,4 - 0,5 мкм. В нем содержится около 50 видов различных гидролитических ферментов в дезактивированном состоянии (протеазы, липазы, фосфолипазы, нуклеазы, гликозидазы, фосфатазы, в том числе кислая фосфатаза; последняя является маркером лизосом). Молекулы этих ферментов, как всегда, синтезируются на рибосомах гранулярной ЭПС, откуда переносятся транспортными пузырьками в КГ, где модифицируются. От зрелой поверхности цистерн КГ отпочковываются первичные лизосомы.

    Все лизосомы клетки формируют лизосомное пространство, в котором с помощью протонного насоса постоянно поддерживается кислая среда - рН колеблется в пределах 3,5-5,0. Мембраны лизосом устойчивы к заключенным в них ферментам и предохраняют цитоплазму от их действия.

    Функция лизосом - внутриклеточный лизис («переваривание») высокомолекулярных соединений и частиц. Захваченные частицы обычно окружены мембраной. Такой комплекс называют фа- госомой.

    Процесс внутриклеточного лизиса осуществляется в несколько этапов. Сначала первичная лизосома сливается с фагосомой. Их комплекс называют вторичной лизосомой (фаголизосомой). Во вторичной лизосоме ферменты активируются и расщепляют поступившие в клетку полимеры до мономеров. Продукты расщепления транспортируются через лизосомную мембрану в цитозоль. Непереваренные вещества остаются в лизосоме и могут сохраняться в клетке очень долго в виде остаточных телец, окруженных мембраной.

    Остаточные тельца относят не к органеллам, а к включениям. Возможен и другой путь превращений: вещества в фагосоме расщепляются полностью, после чего мембрана фагосомы распадается. Вторичные лизосомы могут сливаться между собой, а также с другими первичными лизосомами. При этом иногда образуются своеобразные вторичные лизосомы - мультивезикулярные тельца.

    В процессе жизнедеятельности клетки на разных иерархических уровнях ее организации, начиная от молекул и кончая орга- неллами, постоянно происходит перестройка структур. Вблизи поврежденных или требующих замены участков цитоплазмы, обычно по соседству с комплексом Гольджи, образуется полулунная двойная мембрана, которая растет, окружая со всех сторон поврежденные зоны. Затем эта структура сливается с лизосомами. В такой аутофагосоме (аутосоме) совершается лизис структур органеллы.

    В других случаях в процессе макро- или микроаутофагии подлежащие перевариванию структуры (например, гранулы секрета) впячиваются в лизосомную мембрану, окружаются ею и подвергаются перевариванию. Образуется аутофагическая вакуоль. В результате множественной микроаутофагии тоже формируются мультивезикулярные тельца (например, в нейронах мозга и карди- омиоцитах). Наряду с аутофагией в некоторых клетках происходит и кринофагия (греч. krinein - просеивать, отделять) - слияние

    1. К какой группе органоидов относятся лизосомы, эндоплазматическая сеть и аппарат Гольджи?

    Одномембранные, двумембранные, немембранные.

    Лизосомы, эндоплазматическая сеть и аппарат Гольджи являются одномембранными органоидами.

    2. Каково строение и функции эндоплазматической сети? Чем шероховатая ЭПС отличается от гладкой?

    Эндоплазматическая сеть (ЭПС) представляет собой систему каналов и полостей, окружённых мембраной и пронизывающих гиалоплазму клетки. Мембрана эндоплазматической сети по строению сходна с плазмалеммой. ЭПС может занимать до 50% объёма клетки, её каналы и полости нигде не обрываются и не открываются в гиалоплазму.

    Различают шероховатую и гладкую ЭПС. На мембране шероховатой ЭПС расположено множество рибосом, мембрана гладкой ЭПС не содержит рибосом. На рибосомах шероховатой ЭПС синтезируются белки, выводимые за пределы клетки, а также мембранные белки. На поверхности гладкой ЭПС происходит синтез липидов, олиго- и полисахаридов. Кроме того, в гладкой ЭПС, накапливаются ионы Са 2+ – важные регуляторы функций клеток и организма в целом. Гладкая ЭПС клеток печени осуществляет процессы расщепления и обезвреживания токсичных веществ.

    Шероховатая ЭПС лучше развита в клетках, которые синтезируют большое количество белков (например, в клетках слюнных желез и поджелудочной железы, осуществляющих синтез пищеварительных ферментов; в клетках поджелудочной железы и гипофиза, вырабатывающих гормоны белковой природы). Гладкая ЭПС хорошо развита в клетках, которые синтезируют, например, полисахариды и липиды (клетки надпочечников и половых желез, вырабатывающие стероидные гормоны; клетки печени, осуществляющие синтез гликогена и др.).

    Вещества, которые образуются на мембранах ЭПС, накапливаются внутри полостей сети и преобразуются. Например, белки приобретают свойственную им вторичную, третичную или четвертичную структуру. Затем вещества заключаются в мембранные пузырьки и транспортируются в комплекс Гольджи.

    3. Как устроен комплекс Гольджи? Какие функции он выполняет?

    Комплекс Гольджи – это система внутриклеточных мембранных структур: цистерн и пузырьков, в которых накапливаются и модифицируются вещества, синтезированные на мембранах ЭПС.

    Вещества доставляются в комплекс Гольджи в мембранных пузырьках, которые отшнуровываются от ЭПС и присоединяются к цистернам комплекса Гольджи. Здесь эти вещества претерпевают различные биохимические превращения, а затем снова упаковываются в мембранные пузырьки и большая их часть транспортируется к плазмалемме. Мембрана пузырьков сливается с цитоплазматической мембраной, а содержимое выводится за пределы клетки. В комплексе Гольджи растительных клеток синтезируются полисахариды клеточной стенки. Ещё одна важная функция комплекса Гольджи – образование лизосом.

    4. Самые крупные комплексы Гольджи (до 10 мкм) обнаружены в клетках эндокринных желез. Как вы думаете, с чем это связано?

    Главная функция клеток эндокринных желез – секреция гормонов. Синтез гормонов происходит на мембранах ЭПС, а накопление, преобразование и выведение этих веществ осуществляет комплекс Гольджи. Поэтому в клетках эндокринных желез сильно развит комплекс Гольджи.

    5. Что общего в строении и функциях эндоплазматической сети и комплекса Гольджи? Чем они отличаются?

    Сходство:

    ● Представляют собой комплексы внутриклеточных мембранных структур, ограниченных одинарной мембраной от гиалоплазмы (т.е. являются одномембранными органоидами).

    ● Способны отделять мембранные пузырьки, содержащие различные органические вещества. Вместе составляют единую систему, обеспечивающую синтез веществ, их модификацию и выведение из клетки (обеспечивают "экспорт").

    ● Лучше всего развиты в тех клетках, которые специализируются на секреции биологически активных веществ.

    Различия:

    ● Основные мембранные компоненты эндоплазматической сети – каналы и полости, а комплекса Гольджи – уплощённые цистерны и мелкие пузырьки.

    ● ЭПС специализируется на синтезе веществ, а комплекс Гольджи – на накоплении, модификации и выведении из клетки.

    И (или) другие существенные признаки.

    6. Что представляют собой лизосомы? Как они образуются? Какие функции выполняют?

    Лизосомы – небольшие мембранные пузырьки, которые отшнуровываются от цистерн аппарата Гольджи и содержат набор пищеварительных ферментов, способных расщеплять различные вещества (белки, углеводы, липиды, нуклеиновые кислоты и др.) до более простых соединений.

    Пищевые частицы, поступающие в клетку извне, упаковываются в фагоцитарные пузырьки. Лизосомы сливаются с этими пузырьками – так образуются вторичные лизосомы, в которых под действием ферментов питательные вещества расщепляются до мономеров. Последние путём диффузии поступают в гиалоплазму, а непереваренные остатки выводятся за пределы клетки путём экзоцитоза.

    Помимо переваривания веществ, поступивших в клетку извне, лизосомы принимают участие в расщеплении внутренних компонентов клетки (молекул и целых органоидов), повреждённых или отслуживших свой срок. Этот процесс получил название аутофагии. Кроме того, под действием ферментов лизосом может происходить самопереваривание старых, утративших функциональную активность или повреждённых клеток и тканей.

    7*. Предположите, почему ферменты, находящиеся в лизосоме, не расщепляют её собственную мембрану. К каким последствиям для клетки может привести разрыв мембран лизосом?

    Структурные компоненты мембран лизосом ковалентно связаны с большим количеством олигосахаридов (необычайно сильно гликозилированы). Это не позволяет ферментам лизосом взаимодействовать с мембранными белками и липидами, т.е. "переваривать" мембрану.

    Вследствие разрыва мембран лизосом пищеварительные ферменты попадают в гиалоплазму, что может привести к расщеплению структурных компонентов клетки и даже к автолизу – самоперевариванию клетки. Однако ферменты лизосом работают в кислой среде (рН внутри лизосом составляет 4,5 - 5,0), если же среда близка к нейтральной, что характерно для гиалоплазмы (рН = 7,0 - 7,3), их активность резко снижается. Это один из механизмов защиты клеток от самопереваривания в случае спонтанного разрыва мембран лизосом.

    8*. Установлено, что к молекулам многих веществ, подлежащих выведению из клетки, в комплексе Гольджи «пришиваются» определённые олиго- или полисахариды, причём к разным веществам - различные углеводные компоненты. В таком модифицированном виде вещества и выводятся во внеклеточную среду. Как вы думаете, для чего это нужно?

    Углеводные компоненты являются своеобразными метками или "удостоверениями", в соответствии с которыми вещества поступают к местам их функционирования, не будучи по пути расщеплёнными под действием ферментов. Таким образом, по углеводным меткам организм отличает служебные вещества от чужеродных и подлежащих переработке.

    * Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

    Комплекс Гольджи - это мембранная органелла общего назначения (рисунок 3). Присутствует во всех клетках (кроме эритроцитов и роговых чешуек). Расположен возле ядра. Если клетка полярна, то комплекс Голь­джи ориетирован в сторону выведения продукта.

    Представлен сплющенными цистернами, собранными в стопку. Имеет вьтуктую и вогнутую поверхности. Выпуклая (цис-) поверхность формиро­вания обращена в сторону ядра, вогнутая (транс-) - поверхность созревания обращена в сторону плазмолеммы. Цистерны не сообщаются друг с другом. В центре мембраны сближены и идут параллельно, а на периферии форми­руют расширения или ампулы, от которых отшнуровываются пузырьки. 5-10 плоских цистерн формируют диктиосому. Кроме цистерн в комплексе Голь­джи присутствуют транспортные и секреторные пузырьки.

    Везикулы - небольшие округлые мешочки, в которые упакован зре­лый продукт, готовый к отправке из клетки или использованию внутри ее. Они расположены в периферической части цистерн, чаще встречаются на во-пгутой транс-поверхности созревания, содержимое их светлое, прозрачное.

    Вакуоли - большие мешки. Это расширенные цистерны, заполнен­ные продуктом, недавно поступившим из мест синтеза (гранулярной ЭПС) для доработки или упаковки. Вакуоли встречаются чаще возле выпуклой цис-поверхности.

    Отличия комплекса Гольджи от ЭПС:

    На гранулярной ЭПС в отличие от комплекса Гольджи: есть рибосо­мы, нет \тсладки в стопку, расположена она по всей клетке, а не возле ядра.

    Для агранулярной ЭПС уплощенные цистерны не типичны, харак­терно распределение в виде пузырьков или вакуолей по всей цитоплазме.

    Функции комплекса Гольджи:

      Накопление, химическая перестройка и созревание синтезирован­ных продуктов.

      Процессинг молекул.

      Обеспечение новообразованных гранул мембранами.

      Обновление клеточных мембран, замещение дефектов плазмолеммы.

      Синтез полисахаридов и гликопроитеидов (гликокаликса, слизи).

      Источник образования первичных лизосом (гидролазных пузырь­ков), ферменты которых синтезируются на гранулярной ЭПС.

    Рисунок 4.1 -Десмосома на границе двух эпителиальных клеток

    (увеличение в 100 000 раз):

    1 - десмосома; 2 - цитолеммы контактирующих клеток;

    3 - электронноплотный слой десмосомы;

    4 - прикрепительная пластинка; 5 - тонофиламенты

    Рисунок 4.2 - Десмосома

    а - расположение в клетке; б - схема ультраструктуры;

    1 - плазмолемма; 2 - десмоглеиновый слой; 3 - слой десмоплакина;

    4 - промежуточные филаменты; Д - десмосома; ПД - полудесмосома

    Десмосома на границе двух эпителиальных клеток

    Десмосомы являются характерными контактами для кардиомиоцитов, эпителиальных и других клеток, обеспечивающими их прочное сцепление.

    На данной электронограмме (рисунки 4.1, 4.2) представлены несколь­ко клеток шиповатого слоя эпидермиса. Места их контактов укреплены десмосомами.

    В межклеточной щели в области десмосомы располагается электрон­но-плотный слой, образованный взаимодействующими молекулами инте­гральных гликопротеинов (десмоглеинов) плазмолемм соседних клеток. Для сцепления используются катионы кальция. Со стороны гиалоплазмы в зоне десмосомы располагается электронно-плотный слой белка - десмоп-лакина. в который вплетаются промежуточные филаменты питоскелета.

    Элементы десмосомы:

    1 Щель между плазмолеммами контактирующих клеток. Она соот­ветствует гликокаликсам соседних клеток. Щель в 4 раза шире, чем тол­щина плазмолеммы.

      Электронно-плотная полоска соответствует линии, по которой пе­реплетаются нити десмоглеина, отходящие от наружной поверхности электронно-плотных пластинок.

      Электронно-плотные пластинки прикрепления -утолщения плаз­ молеммы контактирующих клеток за счет наложения электронно-плотного материала (белок - десмоплакин) на плазмолеммы со стороны цитоплазмы.

      Тонофиламенты - это разновидность промежуточных филамен-тов. которые в эпителиальной ткани состоят из предшественников кера­ тина. Каждый тонофиламент подходит к электронно-плотной пластинке и прошивает ее поворачивая обратно, не прошивая плазмолемму насквозь.

      Тонофибриллы - это пучки тонофиламентов. Видны не только в области десмосом, т.к. участвуют в образовании цитоскелета и кератина.

    12

    Рисунок 5 - Лизосомы (увеличение в 26 000 раз):

    1 - лизосомы с электронноплотными частицами;

    2 - митохондрии; 3 - эндопла шатическая сеть

    Похожие статьи